• 文献标题:   Impact of enhanced interfacial strength on physical, mechanical and tribological properties of copper/reduced graphene oxide composites: Microstructural investigation
  • 文献类型:   Article
  • 作  者:   PRATIK A, BISWAL SK, HARIDOSS P
  • 作者关键词:   sintering, electron microscopy, mechanical propertie, functional application
  • 出版物名称:   CERAMICS INTERNATIONAL
  • ISSN:   0272-8842 EI 1873-3956
  • 通讯作者地址:   IIT Madras
  • 被引频次:   0
  • DOI:   10.1016/j.ceramint.2020.06.014
  • 出版年:   2020

▎ 摘  要

Copper/reduced graphene oxide (rGO) composites were prepared to improve the mechanical and tribological properties of copper without adversely affecting its physical properties in any significant manner. No hazardous chemicals were used for reduced graphene oxide production, which maintained the integrity of layers. For better dispersibility of rGO in the copper matrix, electroless deposition of copper was done on the activated and sensitized rGO surfaces. Different amounts of prepared Copper/rGO nanocomposites were then dispersed in bulk copper using ethanol and finally compacted using spark plasma sintering. The coefficient of friction of copper reinforced with 0.5 wt% of nanocomposite reduced by 77.5% compared to neat copper. The flexural strength of copper reinforced with 0.75 wt% of nanocomposite and modulus of 1 wt% of nanocomposite reinforced copper increased by 15.2% and 31.3%, respectively, with different strengthening mechanisms before and after yield point. The increase in hardness and strength of the material along with thin rGO films in the wear track accounted for the sharp decrease in the coefficient of friction for the composites. There was a minimal and gradual decrease in the physical properties (electrical and thermal conductivities) of the composites with an increase in the amount of reinforcement. The two-step composite fabrication process ensured better dispersion of rGO in the copper matrix, which resulted in even properties throughout the composite.