• 文献标题:   A High-Performance Top-Gated Graphene Field-Effect Transistor with Excellent Flexibility Enabled by an iCVD Copolymer Gate Dielectric
  • 文献类型:   Article
  • 作  者:   OH JG, PAK K, KIM CS, BONG JH, HWANG WS, IM SG, CHO BJ
  • 作者关键词:   dirac voltage, field effect transistor, flexible electronic, graphene, initiated chemical vapor deposition icvd
  • 出版物名称:   SMALL
  • ISSN:   1613-6810 EI 1613-6829
  • 通讯作者地址:   Korea Adv Inst Sci Technol
  • 被引频次:   2
  • DOI:   10.1002/smll.201703035
  • 出版年:   2018

▎ 摘  要

A high-performance top-gated graphene field-effect transistor (FET) with excellent mechanical flexibility is demonstrated by implementing a surface-energy-engineered copolymer gate dielectric via a solvent-free process called initiated chemical vapor deposition. The ultrathin, flexible copolymer dielectric is synthesized from two monomers composed of 1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane and 1-vinylimidazole (VIDZ). The copolymer dielectric enables the graphene device to exhibit excellent dielectric performance and substantially enhanced mechanical flexibility. The p-doping level of the graphene can be tuned by varying the polar VIDZ fraction in the copolymer dielectric, and the Dirac voltage (V-Dirac) of the graphene FET can thus be systematically controlled. In particular, the V-Dirac approaches neutrality with higher VIDZ concentrations in the copolymer dielectric, which minimizes the carrier scattering and thereby improves the charge transport of the graphene device. As a result, the graphene FET with 20 nm thick copolymer dielectrics exhibits field-effect hole and electron mobility values of over 7200 and 3800 cm(2) V-1 s(-1), respectively, at room temperature. These electrical characteristics remain unchanged even at the 1 mm bending radius, corresponding to a tensile strain of 1.28%. The formed gate stack with the copolymer gate dielectric is further investigated for high-frequency flexible device applications.