• 文献标题:   Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure
  • 文献类型:   Article
  • 作  者:   VLASSIOUK I, SMIRNOV S, REGMI M, SURWADE SP, SRIVASTAVA N, FEENSTRA R, ERES G, PARISH C, LAVRIK N, DATSKOS P, DAI S, FULVIO P
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF PHYSICAL CHEMISTRY C
  • ISSN:   1932-7447
  • 通讯作者地址:   Oak Ridge Natl Lab
  • 被引频次:   120
  • DOI:   10.1021/jp4047648
  • 出版年:   2013

▎ 摘  要

In this paper we discuss the effect of background pressure and synthesis temperature on the graphene crystal sizes in chemical vapor deposition (CVD) on copper catalyst. For the first time, we quantitatively demonstrate a fundamental role of the background pressure and provide the activation energy for graphene nucleation in atmospheric pressure CVD (9 eV), which is substantially higher than for the low pressure CVD (4 eV). We attribute the difference to a greater importance of copper sublimation in the low pressure CVD, where severe copper evaporation likely dictates the desorption rate of active carbon from the surface. At atmospheric pressure, where copper evaporation is suppressed, the activation energy is assigned to the desorption energy of carbon clusters instead. The highest possible temperature, close to the melting point of copper, should be used for large single crystal graphene synthesis. Using these conditions, we have synthesized graphene single crystals with sizes over 0.5 mm. Single crystal nature of synthesized graphene was confirmed by low-energy electron diffraction. We also demonstrate that CVD of graphene at temperatures below 1000 degrees C shows higher nucleation density on (111) than on (100) and (101) copper surfaces, but there is no identifiable preference at higher temperatures.