• 文献标题:   A calcium fluoride composite reduction graphene oxide functional separator for lithium-sulfur batteries to inhibit polysulfide shuttling and mitigate lithium dendrites
  • 文献类型:   Article
  • 作  者:   JING WT, ZOU KY, DAI X, SHI M, SUN J, ZHU DD, GUO SW, CHEN YZ, LIU YN
  • 作者关键词:   cycling stability, stable plating/striping, functional separator, lithiumsulfur battery
  • 出版物名称:   JOURNAL OF COLLOID INTERFACE SCIENCE
  • ISSN:   0021-9797 EI 1095-7103
  • 通讯作者地址:  
  • 被引频次:   11
  • DOI:   10.1016/j.jcis.2021.05.083 EA MAY 2021
  • 出版年:   2021

▎ 摘  要

Lithium-sulfur (Li-S) batteries have attracted tremendous attention as promising next-generation energy-storage systems due to their high specific capacity and high specific energy. However, the shuttle of polysulfides and the growth of Li dendrites severely obstruct the practical applications of these batteries. In this work, a functional separator is designed and fabricated in which nano-calcium fluoride (CaF2) particles are embedded in reduced graphene oxide (rGO) and bladed on a PP separator. The density functional theory (DFT) calculations of the adsorption energy and bond length reveal that CaF2 has a satisfying adsorption and catalytic effect on polysulfides (Li2Sn). The factional separator could accelerate homogenous Li+ flow and retard the growth of Li dendrites. In addition, an initial specific capacity of 1504 mAh g(-1) at 0.05C is achieved, and it still retains a discharge capacity of 1050 mAh g(-1) over 100 cycles at 0.2C. Moreover, the capacity decay rate is only 0.06% per cycle over 420 cycles at a high current density of 0.5 C. The excellent performance could be attributed to the CaF2@rGO modified separator not only accelerating the transmission of electrons but also effectively inhibiting the shuttling of polysulfides. This work provides a better method for attaining practical applications of high-performance lithium-sulfur batteries. (C) 2021 Elsevier Inc. All rights reserved.