▎ 摘 要
Purpose The purpose of this paper is to investigate the effect of graphene platelets (GPLs) on the low-speed contact between a mass and surface of a multi-layer polymer beam. Design/methodology/approach This problem is primarily organized by first-order shear deformation beam theory and nonlinear Hertz rule. GPLs are distributed along the beam thickness direction. The Halpin-Tsai micromechanics model is applied for computing the effective Young's modulus of the GPLs/polymer composites. In the formulation process, the principle of conservation of energy is first used and the histories of results are extracted using the separation of variables and Runge-Kutta method. Findings In comparing the responses with the available data, a good agreement is observed. The effects of the weight fraction and distribution pattern on the impact response of polymer beam reinforced with GPLs are studied. Results show that contact force is increased, contact time and beam recess are decreased with increasing of weight fraction of GPLs. Also, among the different distribution patterns, the contact force depended on value of GPLs at the point of contact. Originality/value The effects of GPLs addition on the multi-layer polymer beam has a novelty in impact problems.