• 文献标题:   Zwitterionic hydrogel modified reduced graphene oxide/ZnO nanocomposite blended membrane with high antifouling and antibiofouling performances
  • 文献类型:   Article
  • 作  者:   ZHANG W, HUANG H, BERNSTEIN R
  • 作者关键词:   antifouling, biofouling, dual functionality membrane, nanocomposite, zwitterion hydrogel
  • 出版物名称:   JOURNAL OF COLLOID INTERFACE SCIENCE
  • ISSN:   0021-9797 EI 1095-7103
  • 通讯作者地址:  
  • 被引频次:   11
  • DOI:   10.1016/j.jcis.2021.12.194 EA JAN 2022
  • 出版年:   2022

▎ 摘  要

Membrane fouling and biofouling are major challenges in the application of membrane technology for wastewater treatment. The synthesis of antifouling and antibiofouling dual functionality membranes is a promising approach to tackling these problems. In this work, we fabricated a high-efficiency dual functionality polyethersulfone (PES) ultrafiltration membrane by blending an antibacterial reduced graphene oxide-ZnO nanocomposite into a PES matrix (rGO/ZnO-PES) followed by surface grafting of a low-fouling polyampholyte hydrogel (rGO/ZnO-z-PES). The antibacterial activity of the blended membrane was optimized by changing the nanocomposite fraction in the PES dope solution. Surface characterizations (SEMEDS, XPS, ATR-FTIR, contact angle, and Zeta potential) confirmed the successful grafting of the zwitterionic hydrogel on the rGO/ZnO-PES membrane surface. Contact killing assays revealed that the polyampholyte hydrogel grafting did not affect the high antibacterial activity of the rGO/ZnO-PES membrane. Dynamic filtration experiments demonstrated the very high antifouling and antibiofouling of the rGO/ ZnO-z-PES membrane, and significantly higher than those of the rGO/ZnO-PES and pristine PES membranes. The measured concentration of zinc ions in the permeate was low. Overall, our results demonstrate that the rGO/ZnO-z-PES membrane has excellent antifouling and antibiofouling performance and is stable and safe, and therefore very promising for wastewater treatment. (c) 2022 Elsevier Inc. All rights reserved.