▎ 摘 要
Two different methods have been applied to create differently structured nanocrystalline graphene samples used in molecular dynamics simulations. In the first method, graphene sheets are generated by grain growth from individual nucleation seeds. The second method applies Voronoi tessellation to define single crystalline domains in the simulation cells. The differently generated nanocrystalline graphene sheets show significant variations in the grain size distribution and the shape of the crystalline domains. Furthermore, out-of-plane corrugation is found to be more pronounced in samples generated by the Voronoi method, in particular for small grain sizes (