▎ 摘 要
We consider gated graphene nanoribbons subject to Berry-Mondragon boundary conditions in the presence of weak impurities. Using field-theoretical methods, we calculate the density of charge carriers (and, thus, the quantum capacitance) as well as the optical and DC conductivities at zero temperature. We discuss in detail their dependence on the gate (chemical) potential, and reveal a non-linear behaviour induced by the quantization of the transversal momentum.