▎ 摘 要
In the present study, the initiation and evolution mechanisms of wrinkles in a square single layer graphene sheet (SLGS) under gradient tensile displacements are investigated based on molecular dynamics (MD) simulations. The mechanism of wrinkling process is elucidated by studying the atomic out-of-plane displacements development of the key atoms in SLGS. It reveals that the loading and boundary conditions play dominant roles in the wrinkling deformation of graphene. The dependences of the wrinkling amplitude, wavelength, out-of-plane displacement, direction angle and wrinkling area ratio on the applied gradient tensile displacements are obtained. The effects of temperature, size of graphene and loading grads on graphene wrinkling are investigated.