▎ 摘 要
Polypropylene (PP) nanocomposites reinforced with graphene nanoplatelets (GNPs) were prepared via melt extrusion. A special sheet die containing with two shunt plates was designed. The relationships among the flow field of the special die, exfoliation, and dispersion morphology of the GNPs in PP and the macroscopic properties of the nanocomposites were analyzed. Flow field simulation results show that the die with shunt plates provided a high shear stress, high pressure, and high velocity. The differential scanning calorimetry, X-ray scattering, and electron microscopy results reveal that the nanocomposites prepared by the die with the shunt plates had higher crystallinity values and higher exfoliation degrees of GNPs. The orientation of the GNPs parallel with the extrusion direction was also observed. The nanocomposites prepared by the die with shunt plates showed a higher electrical volume conductivity, thermal conductivity, and tensile properties. This indicated that the high shear stress exfoliated the GNPs effectively to a thinner layer and then enhanced the electrical, thermal, and mechanical properties. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44486.