• 文献标题:   Graphene oxide nanoparticles induce hepatic dysfunction through the regulation of innate immune signaling in zebrafish (Danio rerio)
  • 文献类型:   Article
  • 作  者:   XIONG GH, DENG YY, LIAO XJ, ZHANG JE, CHENG B, CAO ZG, LU HQ
  • 作者关键词:   graphene oxide, hepatic dysfunction, inflammation, rnaseq, zebrafish
  • 出版物名称:   NANOTOXICOLOGY
  • ISSN:   1743-5390 EI 1743-5404
  • 通讯作者地址:   Jinggangshan Univ
  • 被引频次:   3
  • DOI:   10.1080/17435390.2020.1735552 EA MAR 2020
  • 出版年:   2020

▎ 摘  要

Graphene oxide (GO) is an increasingly important nanomaterial that exhibits great promise in the area of bionanotechnology and nanobiomedicine. However, the toxic effects of GO on the vertebrate developmental system are still poorly understood. Here, we aimed to investigate the toxic effects and molecular mechanisms of GO exposure in larval and adult zebrafish. The results showed that the major hepatotoxic phenotype induced by GO in zebrafish embryos was a significant decrease in liver area and a dose-dependent decrease in the hepatocytes. Moreover, the number of macrophages and neutrophils in zebrafish embryos were reduced but the expressions of pro-inflammatory cytokines were increased after GO treatment. High through-put RNA-Seq identified 314 differentially expressed genes (DEGs) in GO-induced zebrafish embryos including 192 up-regulated and 122 down-regulated. KEGG and GO functional analysis revealed that steroid hormone biosynthesis, lipoprotein metabolic process, and PPAR signaling pathway were significantly enriched. Most of the lipid metabolism genes were down-regulated while majority of the immune genes were up-regulated after GO treatment. Moreover, GO induced NF-kappa B p65 into the nucleus and increased the protein levels of NF-kappa B p65, JAK2, STAT3, and Bcl2 in adult zebrafish liver. In addition, pharmacological experiments showed that inhibition of ROS and blocking the MAPK signaling could rescue the hepatotoxic phenotypes induced by GO exposure. On the contrary, pharmacological activation of PPAR-alpha expression have increased the hepatotoxic effects in GO-induced larval and adult zebrafish. Taken together, these informations demonstrated that GO induced hepatic dysfunction mainly through the ROS and PPAR-alpha mediated innate immune signaling in zebrafish.