▎ 摘 要
A three-dimensional (3D) graphene-based hydrogels system containing one-dimensional (1D) carbon material-single wall carbon nanotubes (SWCNTs) and pseudocapacitor material-polyaniline (PANI) was prepared by combination of cross-linking, reduced and in situ polymerization. The polyaniline nanoparticles were combined with the reduced graphene sheet by pi-pi conjugation. The as-perpared composite gels could be directly used as electrode materials without binders. Due to the synergistic effect between SWCNTs, graphene sheet and PANI, the graphene/single wall carbon nanotubes/polyaniline (GH/SWCNTs/PANI) composite gel shows the enhanced electrochemical performances. The resultant GH/SWCNTs/PANI gel electroactive material shows a gravimetric specific capacitance of 145.4 F/g at 0.5 A/g and has improved 45% compared with initial graphene hydrogel (GH) at the same current density. And it keeps high retention of 98.8% of the initial capacity after 10,00 charge/discharge cycles at high current density of 10 A/g. The great cycle stability achieved is fundamentally attributed to the support of graphene sheet and single wall carbon nanotubes, which favors stress distribution and charge transfer during the longtime charge/discharge process. The graphene-based hydrogels could be a potential applicant for high rate charge/discharge applications. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 46948.