▎ 摘 要
The application of graphene in the field of microelectronics is becoming more and more urgent with the emergence of bottlenecks in silicon-based semiconductor technology, and the ability of controllable doping in graphene is, therefore, strongly demanded to tune their electronic or optoelectronic properties for the fabrication of high-performance devices. Herein, through seeding zero-dimensional (0D) nitrogen doped graphene quantum dots (N-GQDs) on a catalytic substrate, the graphene monolayer with nitrogen doping is obtained via chemical vapor deposition (CVD). X-ray photoelectron spectroscopy (XPS) characterization shows the doping concentration reaches up to 32%. Experimental and theoretical investigations reveal that N-GQDs act as the nucleation sites for the epitaxial growth of doped graphene monolayers. Finally, infrared photodetector built on N doped graphene (NG) film is fabricated, accompanying with high detectivity (similar to 1.52 x 10(10) cm Hz(1/2) W-1) and responsivity (79 mA W-1) at the wavelength of 1550 nm. Our study may provide a controllable and convenient approach to achieve doped graphene, which paves the way for the application of graphene in the field of microelectronics.