▎ 摘 要
In this study, we investigated the spin-resolved transport aspects of step-like zigzag graphene ribbons (ZGNRs) with single or double edge-saturated hydrogen using a method that combined the density functional theory with the nonequilibrium Green's function method under the local spin density approximation. We found that, when the ZGNR-based heterojunctions were in a parallel or antiparallel layout, negative differential resistance, the maximum bipolar spin-filtering, and spin-rectifying effects occurred synchronously except for the case of spin-down electrons in the parallel magnetic layouts. Interestingly, these spin-resolved transport properties were almost unaffected by altering the widths of the two component ribbons. Therefore, step-like ZGNR heterojunctions are promising for use in designing high-performance multifunctional spintronic devices.