▎ 摘 要
Reduced graphene oxide (RGO) or graphite is functionalized with hydroxyl groups for linking to the sides of polyurethane (PU) chains. Blended PU with RGO or graphite is prepared as a control for comparison. The PU composites are compared with respect to their spectroscopic, thermal, mechanical, shape memory, and sheet resistance properties. Scanning electron microscopy images demonstrate the good distribution of functionalized graphene oxide (FGO) or functionalized graphite (FG) particles on the inner surface of the PU. The linking of FGO or FG onto PU does not significantly affect the thermal behavior or shape memory properties but sharply improves the tensile strength of the PU composites without a noticeable decrease in tensile strain. The shape recovery of PU composites remains at approximately 90%, regardless of the FGO or FG content. The FG-linked PU composites exhibit a sharp decrease in sheet resistance as the FG content increases, whereas the sheet resistance of the FGO-linked PU composites does not decrease with increasing FGO content. The control PU composites with blended RGO or graphite show significant reductions in their sheet resistance. Considering the ease of functionalization of the graphite surface and the significant improvement in tensile strength, linking FG onto PU is advantageous for the development of PU composites with low sheet resistance.