▎ 摘 要
First-principles calculations have been utilized to investigate the biaxial strain-dependent electronic properties of fully hydrogenated bilayer graphene. It has been found that after complete hydrogenation, bilayer graphene exhibits semiconducting characteristics with a wide direct band gap. The band gap can be tuned continuously by the biaxial strain. Furthermore, compressive strain can induce the semiconductor-to-metal transition of this hydrogenated system. The origin of the strain-tunable band gap is discussed. The present study suggests the possibility of tuning the band gap of fully hydrogenated bilayer graphene by using mechanical strain and may provide a promising approach for the fabrication of electromechanical devices based on bilayer graphene.