• 文献标题:   Sonochemically synthesized mono and bimetallic Au-Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity
  • 文献类型:   Article
  • 作  者:   NEPPOLIAN B, WANG C, ASHOKKUMAR M
  • 作者关键词:   augraphene oxide, aggraphene oxide, auaggraphene oxide, sonochemical reduction, 4nitrophenol
  • 出版物名称:   ULTRASONICS SONOCHEMISTRY
  • ISSN:   1350-4177 EI 1873-2828
  • 通讯作者地址:   SRM Univ
  • 被引频次:   41
  • DOI:   10.1016/j.ultsonch.2014.02.006
  • 出版年:   2014

▎ 摘  要

Graphene oxide (GO) supported Ag and Au mono-metallic and Au-Ag bimetallic catalysts were synthesized using a sonochemical method. Bimetallic catalysts containing different weight ratios of Au and Ag were loaded onto GO utilizing a low frequency horn-type ultrasonicator. High frequency ultrasonication was used to efficiently reduce Ag(l) and Au(III) ions in the presence of polyethylene glycol and 2-propanol. Transmission electron microscopy (TEM-EDX) and X-ray photoelectron spectroscopy were used to analyze the morphology, size, shape and chemical oxidation states of the prepared metallic catalysts on GO. The catalytic efficiency of the prepared catalysts were compared using 4-nitrophenol (4-NP) reduction reaction and the subsequent formation of 4-aminophenol (4-AP) that was also monitored using UV-vis spectrophotometry. The results revealed that Au-Ag-GO bimetallic catalysts showed high activity for the conversion of 4-NP to 4-AP than their monometallic counterparts. Amongst different weight ratios (1:1, 1:2 and 2:1) between Au and Ag, the 1:2 (Au:Ag) catalyst exhibited very good catalytic performance for the conversion of 4-NP to 4-AP. A total reduction of 4-NP took place within a short period of time if Au-GO was reduced first followed by Ag reduction, whereas a lower reduction rate was observed if Ag-GO was reduced first. The same trend was observed for all the ratios of bimetallic catalysts prepared by this method. The initial unfavorable reduction potential of Ag(I) is likely to be responsible for the above order. It was found that applying dual frequency ultrasonication was a highly effective way of preparing bimetallic catalysts requiring relatively low levels of added chemicals and producing bimetallic catalysts with GO with improved catalytic efficiency. (C) 2014 Elsevier B.V. All rights reserved.