▎ 摘 要
Full exploitation of graphene's superior properties requires the ability to precisely control its morphology and edge structures. We present such a structure-tailoring approach via controlled atom removal from graphene edges. With the use of a graphitic-carbon-capped tungsten nano-electrode as a noncontact "milling" tool in a transmission electron microscope, graphene edge atoms approached by the tool tip are locally evaporated, thus allowing a freestanding graphene sheet to be tailored with high precision and flexibility. A threshold for the tip voltage of 3.6 +/- 0.4 V, independent of polarity, is found to be the determining factor that triggers the controlled etching process. The dominant mechanisms involve weakening of carbon-carbon bonds through the interband excitation induced by tunneling electrons, assisted with a resistive-heating effect enhanced by high electric field, as elaborated by first-principles calculations. In addition to the precise shape and size control, this tip-based method enables fabrication of graphene edges with specific chiralities, such as "armchair" or "zigzag" types. The as-obtained edges can be further "polished" to become entirely atomically smooth via edge evaporation/reconstruction induced by in situ TEM Joule annealing. We finally demonstrate the potential of this technique for practical uses through creating a graphene-based point electron source, whose field emission characteristics can effectively be tuned via modifying its geometry.