▎ 摘 要
In recent years, the demand for high-performance flexible and portable electronics with high power/energy density has increased rapidly. Currently, the flexible devices have seized the interest of researchers in energy storage especially, supercapacitors and batteries. Working on the same line, ternary nanostructured polyaniline/Fe2O3-decorated graphene (PGF) composite hydrogel coated on carbon cloth has been prepared as a potential electrode material for flexible supercapacitor. Different compositions of aniline to Fe2O3-decorated graphene have been synthesized by in situ chemical oxidative polymerization. The ternary composite hydrogel on carbon cloth exhibits a high specific capacitance of 1124 F/g at a current density of 0.25 A/g in 1 M H2SO4. The symmetrical supercapacitor has shown high rate capability (similar to 82.2% at 7.5 A/g) as well as excellent cycling stability. The excellent electrochemical performance of ternary composites hydrogel have been realized because of the well-designed cross-linked hydrogel structure, high surface area, and synergistic effects among all three constituents. This outstanding performance holds great potential for next-generation flexible supercapacitors.