• 文献标题:   Computational Studies on the Materials Combining Graphene Quantum Dots and Pt Complexes with Adjustable Luminescence Characteristics
  • 文献类型:   Article
  • 作  者:   WANG SP, LI Y, ZHANG ZX, ZHANG Y, WANG Y, KONG SM, LI HC, JIAN W, BAI FQ, ZHANG HX
  • 作者关键词:  
  • 出版物名称:   INORGANIC CHEMISTRY
  • ISSN:   0020-1669 EI 1520-510X
  • 通讯作者地址:  
  • 被引频次:   14
  • DOI:   10.1021/acs.inorgchem.0c02772 EA JAN 2021
  • 出版年:   2021

▎ 摘  要

Graphene materials with particular properties are proved to be beneficial to photoelectric devices, but there are rare reports on a positive effect by graphene on emissive layer materials of organic light-emitting diodes (OLEDs) previously. On the basis of the latest important experiments, an OLED device with the aid of graphene quantum dots shows the dawn of their application for luminescent materials. The luminescence performance has been improved, but the understanding of the internal excited-state radiation mechanism of the material needs further study. In this work, the Pt(II)-coordinated graphene quantum dot coplanar structures with different shapes are studied theoretically in detail, and the results present the improvement in phosphorescence under the promoted radiative decay and suppressed nonradiative decay. This composite combines the advantages of transition metal complexes and graphene quantum dots and also exhibits excellent properties in the light absorption region and carrier transportation for the OLED. This comprehensive theoretical calculation research can provide a comprehensive basis of the material design in the future.