▎ 摘 要
Positively charged nanodiamond (ND) is used to decorate negatively charged graphene oxide (GO) to form a GO ND hybrid nanomaterial by electrostatic force. Structural studies results showed that after the decoration, the aggregation of GO sheets is extensively hindered in both at the powder and dispersion states, with a clear reduction in the layer numbers in the latter. The mechanical properties of epoxy/GO, epoxy/ND and epoxy/GO-ND were investigated and compared. The results showed that the GO increased the ductility of epoxy, while the ND increased the rigidity. The best mechanical performance was found for the epoxy/GO-ND nanocomposites, at a GO:ND ratio of 1:5. The reinforcement mechanism of the nanophases was further illustrated by the fracture surface of SEM/optical images and TGA analysis. In addition, the anti-corrosion property of the thus developed epoxy nanocomposite coatings was revealed by electrochemical impedance spectroscopy (EIS), and the results demonstrated that the epoxy/GO-ND coatings exhibited better anti-corrosion property.