• 文献标题:   Microstructure, conductivity and mechanical properties of calcia stabilized zirconia ceramics obtained from nanosized precursor and reduced graphene oxide doped precursor powders
  • 文献类型:   Article
  • 作  者:   KURAPOVA OY, GLUMOV OV, LOMAKIN IV, GOLUBEV SN, PIVOVAROV MM, KRIVOLAPOVA JV, KONAKOV VG
  • 作者关键词:   zro2, ionic conductivity, grain boundarie, impedance spectroscopy, hardnes, reduced graphene oxide
  • 出版物名称:   CERAMICS INTERNATIONAL
  • ISSN:   0272-8842 EI 1873-3956
  • 通讯作者地址:   Univ Sky Pr 26
  • 被引频次:   5
  • DOI:   10.1016/j.ceramint.2018.05.202
  • 出版年:   2018

▎ 摘  要

In the work 12CaO-88ZrO(2) (12CSZ, mol%) ceramics was manufactured both from nanopowder, obtained via cryochemical technique, and composite precursor 12CSZ + 0.25 wt% rGO (reduced graphene oxide). Via SEM, XRD and Raman spectroscopy the detailed investigation of the effect of the precursor type and intermediate processing on the microstructure and electrical conductivity of ceramics was carried out. It was shown that rGO is completely removed during the annealing at 1550 degrees C for 3 h in air with no effect on the high ionic conductivity of ceramics. The use of nanosized powder and the additional processing step results in vacuum dense solid electrolytes characterized by well-formed cubic zirconia based solid solution, thin discontinuous grain boundaries and rather high ionic conductivity. The addition of rGO leads to slight microhardness (HV) decrease comparing to ceramics manufactured from the nanosized precursor. As a result, a new technique for zirconia based solid electrolytes having both high electrical conductivity at high temperatures and sufficient mechanical properties was suggested.