• 文献标题:   How size, edge shape, functional groups and embeddedness influence the electronic structure and partial optical properties of graphene nanoribbons
  • 文献类型:   Article
  • 作  者:   FENG J, MAO XL, ZHU HX, YANG Z, CUI MD, MA YC, ZHANG DP, BI SW
  • 作者关键词:  
  • 出版物名称:   PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • ISSN:   1463-9076 EI 1463-9084
  • 通讯作者地址:  
  • 被引频次:   5
  • DOI:   10.1039/d1cp02689e EA SEP 2021
  • 出版年:   2021

▎ 摘  要

The armchair and zigzag edge shape makes graphene nanoribbons (GNRs) exhibit interest in different applications. However, the relationship between influencing factors and properties is not clear. Herein, the many-body Green's function theory and the TDDFT method are used to investigate the effect of size, edge shape and functional groups on the electronic and optical properties of GNRs and h-BN-embedded GNRs. We find that ZGNRs have a smaller band gap and absorption edge than AGNRs having the same size and functional groups. The relationship between S-1 and T-1 is mainly determined by the size and edge shape of GNRs, while the redox ability of water splitting mainly relies on the kind of the functional group. When h-BN is embedded in GNRs, the edge shape of GNRs and the contact part between two substances control the direction of electron transfer in both the ground state and the excited state. These results can provide theoretical support for further improvements and applications of GNRs.