• 文献标题:   A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode
  • 文献类型:   Article
  • 作  者:   KARUPPIAH C, PALANISAMY S, CHEN SM, VEERAMANI V, PERIAKARUPPAN P
  • 作者关键词:   graphene, cobalt oxide nanoparticle, glucose oxidase, direct electrochemistry, glucose biosensor, nonenzymatic hydrogen peroxide sensor
  • 出版物名称:   SENSORS ACTUATORS BCHEMICAL
  • ISSN:   0925-4005
  • 通讯作者地址:   Natl Taipei Univ Technol
  • 被引频次:   84
  • DOI:   10.1016/j.snb.2014.02.034
  • 出版年:   2014

▎ 摘  要

In the present study, we have demonstrated the fabrication of novel enzymatic glucose biosensor using glucose oxidase (GOD) as a model enzyme which has been immobilized onto the graphene (GF) and cobalt oxide nanoparticles (Co3O4-NPs) composite modified electrode. The GF/Co3O4-NPs composite was prepared by hydrothermal method and characterized by using scanning electron microscopy, X-ray diffraction and elemental analysis. The GOD immobilized GF/Co3O4-NPs modified electrode shows a well defined redox behaviour indicating the reversible proton and electron transfer reaction of GOD. A heterogeneous electron transfer rate constant (K-s) of immobilized GOD has been calculated to be 3.52 s(-1) which is much higher than that of GOD immobilized GF supports. The fast electron transfer of GOD is attributed to the excellent biocompatibility of Co3O4-NPs and high conductivity of the GF. The fabricated glucose biosensor exhibits a wider linear response for glucose from 0.5 mM to 16.5 mM with the sensitivity of 13.52 mu A mM(-1) cm(-2). In addition, a non-enzymatic H2O2 sensor has been further developed using GF/Co3O4-NPs composite modified electrode. The GF/Co3O4-NPs composite electrode shows an excellent electrocatalytic activity towards H2O2 with the response time of <10 s. The H2O2 response at GF/Co3O4-NPs composite modified electrode displays a linear response ranging from 0.2 to 211.5 mu M with a limit of detection of 0.06 mu M. (C) 2014 Elsevier B.V. All rights reserved.