▎ 摘 要
Graphene oxide (GO) and its composite membranes have exhibited great potential for application in water purification and desalination. This article reports that a novel graphene oxide membrane (GOM) of similar to 5 mu m thickness was fabricated onto a nylon membrane by vacuum filtration and cross-linked by amino acids (L-alanine, L-phenylalanine, and serine). The GOM cross-linked by amino acids (GOM-A) exhibits excellent stability, high water flux, and high rejection to metal ions. The rejection coefficients to alkali and alkaline earth metal ions through GOM-A were over 94% and 96%, respectively. The rejection coefficients decreased with an increasing H+ concentration. Metal ions (K+, Ca2+, and Fe3+) can be inserted into GOM-A layers, which enlarges the interlayer spacing of GOM-A and neutralizes the electronegativity of the membrane, resulting in the decease in the rejection coefficients to metal ions. Meanwhile, GOM-A showed quite high antibacterial efficiency against E. coli. With the excellent performance as described above, GOM-A could be used to purify and desalt water.