▎ 摘 要
A novel non-enzymatic electrochemical sensor for highly sensitive and selective detection of dopamine was developed based on a 3,4,9,10-perylene tetracarboxylic acid functionalized graphene-multiwalled carbon nanotube-gold nanoparticle nanocomposite modified glassy carbon electrode (PTCA-RGO-MWCNTs-Au NPs/GCE). The nanocomposite film was prepared by a facile, eco-friendly and controllable route and its morphology was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopic (EDX) analysis, and X-ray diffraction (XRD) spectroscopy, respectively Cyclic voltammetry and chronoamperometry were used for evaluating the electrochemical behaviors of the prepared sensor. The DA sensor exhibited excellent electrochemical performance toward DA with a sensitivity as high as 0.124 mu A mM(-1), a wide linear range of 1-100 mu M and a low detection limit of 0.07 mu M (S/N = 3). Moreover, it showed good selectivity toward DA without any obvious interference by AA and UA Furthermore, the prepared DA sensor was applied to detect DA in real samples with satisfactory results.