• 文献标题:   Optimizing Low-Concentration Mercury Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Fe3O4 Composites with the Aid of an Artificial Neural Network and Genetic Algorithm
  • 文献类型:   Article
  • 作  者:   CAO RS, FAN MY, HU JW, RUAN WQ, XIONG KN, WEI XH
  • 作者关键词:   water treatment, mercury, artificial neural network, genetic algorithm, artificial intelligence
  • 出版物名称:   MATERIALS
  • ISSN:   1996-1944
  • 通讯作者地址:   Guizhou Normal Univ
  • 被引频次:   5
  • DOI:   10.3390/ma10111279
  • 出版年:   2017

▎ 摘  要

Reduced graphene oxide-supported Fe3O4 (Fe3O4/rGO) composites were applied in this study to remove low-concentration mercury from aqueous solutions with the aid of an artificial neural network (ANN) modeling and genetic algorithm (GA) optimization. The Fe3O4/rGO composites were prepared by the solvothermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), N-2-sorption, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and superconduction quantum interference device (SQUID). Response surface methodology (RSM) and ANN were employed to model the effects of different operating conditions (temperature, initial pH, initial Hg ion concentration and contact time) on the removal of the low-concentration mercury from aqueous solutions by the Fe3O4/rGO composites. The ANN-GA model results (with a prediction error below 5%) show better agreement with the experimental data than the RSM model results (with a prediction error below 10%). The removal process of the low-concentration mercury obeyed the Freudlich isotherm and the pseudo-second-order kinetic model. In addition, a regeneration experiment of the Fe3O4/rGO composites demonstrated that these composites can be reused for the removal of low-concentration mercury from aqueous solutions.