• 文献标题:   Graphene-based transparent conductive electrodes for GaN-based light emitting diodes: Challenges and countermeasures
  • 文献类型:   Review
  • 作  者:   WANG LC, LIU W, ZHANG YY, ZHANG ZH, TAN ST, YI XY, WANG GH, SUN XW, ZHU HW, DEMIR HV
  • 作者关键词:   graphene, light emitting diode, transparent conductive electrode, gallium nitride, chemical vapor deposition
  • 出版物名称:   NANO ENERGY
  • ISSN:   2211-2855 EI 2211-3282
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   53
  • DOI:   10.1016/j.nanoen.2014.12.035
  • 出版年:   2015

▎ 摘  要

Graphene, with attractive electrical, optical, mechanical and thermal properties, is considered to be an ideal candidate for transparent conductive electrodes (TCEs) in many optoelectronic devices, including III-nitride based devices. However, high contact resistivity (pc) between graphene and GaN (especially p-GaN) has become a major challenge for graphene TCEs utilization in GaN-based light-emitting diodes (LEDs). Here, we analyzed the graphene/GaN contact junction in detail and reviewed the current research progress for reducing 9, in graphene TCEs on GaN LEDs, including interface engineering, chemical doping and tunnel junction design. We also analyzed the current diffusion length for a single layer graphene (SLG) and multiple layer graphene (MLG) TCEs. Finally, to improve the fabrication process compatibility and simplicity with paramount reproduction, a method of directly growing graphene films on GaN by chemical vapor deposition (CVD) is proposed. We also give a short analysis on the reliability of graphene TCEs for GaN-based LEDs. It is believed that this is the ultimate solution for graphene TCEs application for GaN-based LEDs and others in general for other opto- and electrical devices. (C) 2014 Elsevier Ltd. All rights reserved.