• 文献标题:   Bowl-shaped hollow carbon wrapped in graphene grown in situ by chemical vapor deposition as an advanced anode material for sodium-ion batteries
  • 文献类型:   Article
  • 作  者:   YANG GR, ZHOU ZY, LIU XF, ZHANG Y, WANG SL, YAN W, DING SJ
  • 作者关键词:   anode material, sodium storage, carbon, graphene, sodium ion battery
  • 出版物名称:   JOURNAL OF COLLOID INTERFACE SCIENCE
  • ISSN:   0021-9797 EI 1095-7103
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1016/j.jcis.2023.01.092 EA JAN 2023
  • 出版年:   2023

▎ 摘  要

Sodium-ion batteries (SIBs) are expected to be ideal alternatives to lithium-ion batteries (LIBs) in the future due to their abundant and low-cost resource advantages. A key challenge in SIBs is the development of anodes capable of insertion/extraction of sodium ions (Na') with large radii. Here, hollow bowl-shaped porous carbon materials are uniformly modified with vertically grown graphene (denoted as HBC/VGSs) demonstrating a large specific surface area and three-dimensional structure, which are employed as a viable high-performance anode for SIBs. HBC/VGSs anodes are highly effective at storing sodium because of their structural features. As a result, the HBC/VGSs electrodes provide a high reversible capacity of 409 mAh g-1 after 100 cycles at 0.1 A g-1, as well as outstanding rate capability (301.6 mAh g-1 at 5 A g-1). Moreover, it also shows extraordinary cycling stability (230.3 mAh g-1 after 2500 cycles at a high current density of 5 A g-1) that is significantly better than the pristine hollow bowl-shaped porous carbon (HBC). Cyclic Voltammetry (CV) and Galvanostatic Intermittent Titration Technique (GITT) were used to analyze the pseudocapacitance and sodium storage kinetics. It was found that high electrical conductivity and large surface area can improve Na' adsorption and diffusion, enhance the electronic conductivity, and deliver superior capacity and rate. The results, taken as a whole, provide new insight into the creation of long-lasting carbon anodes that deliver optimal performance in SIBs.(c) 2023 Elsevier Inc. All rights reserved.