• 文献标题:   Ultrasensitive and Wide-Bandwidth Thermal Measurements of Graphene at Low Temperatures
  • 文献类型:   Article
  • 作  者:   FONG KC, SCHWAB KC
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW X
  • ISSN:   2160-3308
  • 通讯作者地址:   CALTECH
  • 被引频次:   70
  • DOI:   10.1103/PhysRevX.2.031006
  • 出版年:   2012

▎ 摘  要

At low temperatures, the electron gas of graphene is expected to show both very weak coupling to thermal baths and rapid thermalization, properties which are desirable for use as a sensitive bolometer. We demonstrate an ultrasensitive, wide-bandwidth measurement scheme based on Johnson noise to probe the thermal-transport and thermodynamic properties of the electron gas of graphene, with a resolution of 2 mK/root Hz and a bandwidth of 80 MHz. We have measured the electron-phonon coupling directly through energy transport, from 2-30 K and at a charge density of 2 x 10(11) cm(-2). We demonstrate bolometric mixing and utilize this effect to sense temperature oscillations with a period of 430 ps and determine the heat capacity of the electron gas to be 2 x 10(-21) J/(K . mu m(2)) at 5 K, which is consistent with that of a two-dimensional Dirac electron gas. These measurements suggest that graphene-based devices, together with wide-bandwidth noise thermometry, can generate substantial advances in the areas of ultrasensitive bolometry, calorimetry, microwave and terahertz photo-detection, and bolometric mixing for applications in fields such as observational astronomy and quantum information and measurement.