• 文献标题:   Substrate effects on electrical parameters of Dirac fermions in graphene
  • 文献类型:   Article
  • 作  者:   TIRAS E, ARDALI S, FIRAT HA, ARSLAN E, OZBAY E
  • 作者关键词:   graphene, ti2o, si, shubnikov de haas oscillation, inplane effective mas
  • 出版物名称:   MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING
  • ISSN:   1369-8001 EI 1873-4081
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1016/j.mssp.2021.105936 EA MAY 2021
  • 出版年:   2021

▎ 摘  要

The substrate effects on the electronic transport properties of single-layer graphene on TiO2/Si substrate have been studied. The Hall mobility, sheet carrier density, and transport lifetime were obtained from the temperature-dependent Hall measurements, while the in-plane effective mass, quantum lifetime was obtained from the temperature-dependent variation of the Shubnikov de Haas (SdH) oscillations that were made at 1.8 to 45 K temperature range and up to the magnetic field of 11 T. The measurement results showed that in SLG/TiO2/ Si sample, there were 2.36 +/- 0.12x1016 m-3 amounts of 3D carriers coming from the substrate. In our previous studies, 3D carrier densities were measured as 6.07x1016 m-3 and zero for SLG/SiO2/Si and SLG/SiC sample, respectively. This result shows that the 3D carriers formed in the structure are significantly changed by a substrate. The scattering mechanisms were determined using the zt/zq ratio. The ratio values obtained as 3.66. This value obtained was compared with the values we found for SLG/SiC (zt/zq=1.36) sample and SLG/TiO2/Si (zt/zq=3.08) sample our previous study. The results show that small-angle scattering is dominant in SLG/SiC sample, but large-angle scattering is dominant in SLG/SiO2/Si and SLG/TiO2/Si samples. The charged impurity scattering is the dominant scattering mechanism in SLG/TiO2/Si and SLG/SiO2/Si samples, whereas in SLG/SiC samples, a short-range scattering mechanism such as lattice defects can be said to affect the electronic transport.