• 文献标题:   Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards
  • 文献类型:   Article
  • 作  者:   YU P, LI ZY, XU HY, HUANG L, DIETZ B, GREBOGI C, LAI YC
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW E
  • ISSN:   2470-0045 EI 2470-0053
  • 通讯作者地址:   Lanzhou Univ
  • 被引频次:   6
  • DOI:   10.1103/PhysRevE.94.062214
  • 出版年:   2016

▎ 摘  要

A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties of classically integrable systems generically are described by Poisson statistics, whereas those of time-reversal symmetric, classically chaotic systems coincide with those of random matrices from the Gaussian orthogonal ensemble (GOE). Does this result hold for two-dimensional Dirac material systems? To address this fundamental question, we investigate the spectral properties in a representative class of graphene billiards with shapes of classically integrable circular-sector billiards. Naively one may expect to observe Poisson statistics, which is indeed true for energies close to the band edges where the quasiparticle obeys the Schrodinger equation. However, for energies near the Dirac point, where the quasiparticles behave like massless Dirac fermions, Poisson statistics is extremely rare in the sense that it emerges only under quite strict symmetry constraints on the straight boundary parts of the sector. An arbitrarily small amount of imperfection of the boundary results in GOE statistics. This implies that, for circular-sector confinements with arbitrary angle, the spectral properties will generically be GOE. These results are corroborated by extensive numerical computation. Furthermore, we provide a physical understanding for our results.