▎ 摘 要
In recent years, flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics. As a result, important innovations have been reported in both conductive materials and the underlying substrates, which are the two crucial components of a pressure sensor. 1D materials like nanowires are being widely used as the conductive materials in flexible pressure sensors, but such sensors usually exhibit low performances mainly due to the lack of strong interfacial in-teractions between the substrates and 1D materials. In this paper, we report the use of graphene/graphene scrolls hybrid multilayers films as the conductive material and a micro-structured polydimethylsiloxane substrate usingEpipremnum aureumleaf as the template to fabricate highly sensitive pressure sensors. The 2D structure of graphene allows to strongly anchor the scrolls to ensure the improved adhesion between the highly conductive hybrid films and the patterned substrate. We attribute the increased sensitivity (3.5 kPa(-1)), fast response time (<50 ms), and the good reproducibility during 1000 loading-unloading cycles of the pressure sensor to the synergistic effect between the 1D scrolls and 2D graphene films. Test results demonstrate that these sensors are promising for electronic skins and motion detection applications.