• 文献标题:   High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target
  • 文献类型:   Article
  • 作  者:   HE GW, HUANG SQ, VILLALOBOS LF, ZHAO J, MENSI M, OVEISI E, REZAEI M, AGRAWAL KV
  • 作者关键词:  
  • 出版物名称:   ENERGY ENVIRONMENTAL SCIENCE
  • ISSN:   1754-5692 EI 1754-5706
  • 通讯作者地址:   Ecole Polytech Fed Lausanne
  • 被引频次:   17
  • DOI:   10.1039/c9ee01238a
  • 出版年:   2019

▎ 摘  要

Membrane-based postcombustion carbon capture can reduce the capture penalty in comparison to absorbent-based separation. To realize this, high-performance membranes are urgently needed with a CO2 permeance exceeding 1000 gas permeation units or GPU, and a CO2/N-2 mixture separation factor exceeding 20. Here, we report a new class of organic-inorganic hybrid membranes based on single-layer graphene with a selective layer thinner than 20 nm. For this, the impermeable graphene lattice is exposed to oxygen plasma leading to a high percentage of vacancy defects (porosity up to 18.5%) and is then functionalized with CO2-philic polymeric chains. Treating a gas stream mimicking flue gas, the hybridmembranes yield a six-fold higher CO2 permeance (6180 GPU with a CO2/N-2 separation factor of 22.5) than the performance target. Membranes prepared with a combination of optimized graphene porosity, pore size, and functional groups yield a CO2 permeance up to 11 790 GPU. Other membranes yield a CO2/N-2 selectivity up to 57.2.