▎ 摘 要
The different filler effects of identical nitrile-functionalized carbon nanotubes (CNTs) and graphene nanoplatelets (GNs) in a poly(arylene ether nitrile) (PEEN) matrix were investigated. PEEN/CNT and PEEN/GN composites were prepared by a facile solution-casting method and systematically investigated for their differences in morphological, thermal and rheological properties. In the PEEN matrix GNs contact one another in a plane-to-plane manner, while CNTs are separated. Compared with PEEN/CNT composites, PEEN/GN composites below 2 wt% filler content exhibited higher thermal stability. Rheological properties of the resulting composites indicated that PEEN/GN composites were more sensitive to strain and exhibited higher *, G and G than PEEN/CNT composites. The rheological percolation for CNTs is over 2 wt%, higher than that for GNs (around 1 wt%). All these differences originate from the different dimensions and structures of CNTs and GNs: GNs with a flake-like structure and larger surface area can have stronger physical and interfacial interactions with the polymer matrix. This work gives a comparative view of the different filler effects that functionalized CNTs and GNs can have in the polymer host. With identical processing technology, GNs can show a stronger filler effect than CNTs. (c) 2012 Society of Chemical Industry