• 文献标题:   Free energy landscape of dissociative adsorption of methane on ideal and defected graphene from ab initio simulations
  • 文献类型:   Article
  • 作  者:   WLAZLO M, MAJEWSKI JA
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF CHEMICAL PHYSICS
  • ISSN:   0021-9606 EI 1089-7690
  • 通讯作者地址:   Univ Warsaw
  • 被引频次:   0
  • DOI:   10.1063/1.5013603
  • 出版年:   2018

▎ 摘  要

We study the dissociative adsorption of methane at the surface of graphene. Free energy profiles, which include activation energies for different steps of the reaction, are computed from constrained ab initio molecular dynamics. At 300 K, the reaction barriers are much lower than experimental bond dissociation energies of gaseous methane, strongly indicating that the graphene surface acts as a catalyst of methane decomposition. On the other hand, the barriers are still much higher than on the nickel surface. Methane dissociation therefore occurs at a higher rate on nickel than on graphene. This reaction is a prerequisite for graphene growth from a precursor gas. Thus, the growth of the first monolayer should be a fast and efficient process while subsequent layers grow at a diminished rate and in a more controllable manner. Defects may also influence reaction energetics. This is evident from our results, in which simple defects (Stone-Wales defect and nitrogen substitution) lead to different free energy landscapes at both dissociation and adsorption steps of the process. Published by AIP Publishing.