• 文献标题:   Additive-Free Electrophoretic Deposition of Graphene Quantum Dots Thin Films
  • 文献类型:   Article
  • 作  者:   NGUYEN TD, GEULI O, YEO LP, MAGDASSI S, MANDLER D, TOK AIY
  • 作者关键词:   electrophoretic deposition, graphene, quantum dot, thin film, visible transparency
  • 出版物名称:   CHEMISTRYA EUROPEAN JOURNAL
  • ISSN:   0947-6539 EI 1521-3765
  • 通讯作者地址:   Nanyang Technol Univ
  • 被引频次:   2
  • DOI:   10.1002/chem.201903596 EA NOV 2019
  • 出版年:   2019

▎ 摘  要

The electrophoretic deposition (EPD) of graphene-based materials on transparent substrates is highly potential for many applications. Several factors can determine the yield of the EPD process, such as applied voltage, deposition time and particularly the presence of dispersion additives (stabilisers) in the suspension solution. This study presents an additive-free EPD of graphene quantum dot (GQD) thin films on an indium tin oxide (ITO) glass substrate and studies the deposition mechanism with the variation of the applied voltage (10-50 V) and deposition time (5-25 min). It is found that due to the small size (approximate to 3.9 nm) and high content of deprotonated carboxylic groups, the GQDs form a stable dispersion (zeta-potential of about -35 mV) without using additives. The GQD thin films can be deposited onto ITO with optimal surface morphology at 30 V in 5 min (surface roughness of approximately (3.1 +/- 1.3) nm). In addition, as-fabricated GQD thin films also possess some interesting physico-optical properties, such as a double-peak photoluminescence at about lambda=417 and 439 nm, with approximately 98 % visible transmittance. This low-cost and eco-friendly GQD thin film is a promising material for various applications, for example, transparent conductors, supercapacitors and heat conductive films in smart windows.