• 文献标题:   Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors
  • 文献类型:   Article
  • 作  者:   ZHOU G, KIM NR, CHUN SE, LEE W, UM MK, CHOU TW, ISLAM MF, BYUN JH, OH Y
  • 作者关键词:  
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Korea Inst Mat Sci
  • 被引频次:   15
  • DOI:   10.1016/j.carbon.2017.12.123
  • 出版年:   2018

▎ 摘  要

Easy shapeable highly porous and robust three dimensional (3D) nano-carbon architectures (3D NCA) are crucial for the practical applications of electrochemical energy storage devices. Here, a facile easy shapeable nitrogen-doped graphene coated 3D NCA exhibiting an ultra-high specific surface area, remarkable robustness, and excellent aqueous wettability is reported. A 3D single-walled carbon nanotube (SWCNT) hydrogel composed of isolated SWCNTs is first prepared, and then a thin polydopamine (pDA) layer is uniformly coated onto the fabricated 3D SWCNT hydrogel via an in situ polymerization of dopamine. A nitrogen-doped graphene-coated 3D NCA is obtained via pyrolysis of the pDA-coated 3D NCA. By decorating this highly porous nitrogen-doped 3D NCA onto helical micro carbon fibers, a highly stretchable (similar to 100% strain) wire-type supercapacitor (WTSC) is fabricated. The areal specific power and energy density of the WTSC are determined to be 2.59 mW cm(-2) and 1.1 mu Wh cm(-2), respectively. These values are remarkably larger than those previously reported WTSCs. Moreover, our WTSC maintains more than 91% of its capacitance after 10,000 stretch-release cycles at tensile strains of up to 50%. The combination of the easy shapeable, robust and highly porous nitrogen-doped 3D NCA paves a new way for the development of high-performance wearable textile-based energy devices. (C) 2018 Elsevier Ltd. All rights reserved.