• 文献标题:   Ultrathin Nanosheets of Oxo-functionalized Graphene Inhibit the Ion Migration in Perovskite Solar Cells
  • 文献类型:   Article
  • 作  者:   LI M, ZUO WW, WANG Q, WANG KL, ZHUO MP, KOBLER H, HALBIG CE, EIGLER S, YANG YG, GAO XY, WANG ZK, LI YF, ABATE A
  • 作者关键词:   ionmigration inhibition, oxofunctionalized graphene, triple cation perovskite
  • 出版物名称:   ADVANCED ENERGY MATERIALS
  • ISSN:   1614-6832 EI 1614-6840
  • 通讯作者地址:   Soochow Univ
  • 被引频次:   9
  • DOI:   10.1002/aenm.201902653 EA DEC 2019
  • 出版年:   2020

▎ 摘  要

Mixed cation/halide perovskites have led to a significant increase in the efficiency and stability of perovskite solar cells. However, mobile ionic defects inevitably exacerbate the photoinduced phase segregation and self-decomposition of the crystal structure. Herein, ultrathin 2D nanosheets of oxo-functionalized graphene/dodecylamine (oxo-G/DA) are used to solve ion migration in cesium (Cs)-formamidinium (FA)-methylammonium (MA) triple-cation-based perovskites. Based on the superconducting carbon skeleton and functional groups that provide lone pairs of electrons on it, the ultrathin 2D network structure can fit tightly on the crystals and wrap them, isolating them, and thus reducing the migration of ions within the built-in electric field of the perovskite film. As evidence of the formation of sharp crystals with different orientation within the perovskite film, moire fringes are observed in transmission electron microscopy. Thus, a champion device with a power conversion efficiency (PCE) of 21.1% (the efficiency distribution is 18.8 +/- 1.7%) and a remarkable fill factor of 81%, with reduced hysteresis and improved long-term stability, is reported. This work provides a simple method for the improvement of the structural stability of perovskite in solar cells.