• 文献标题:   Non-oxidized graphene/metal composites by laser deposition additive manufacturing
  • 文献类型:   Article
  • 作  者:   WANG TQ, MENG QS, ARABY S, YANG G, LI PX, CAI R, HAN SN, WANG W
  • 作者关键词:   graphene, metal matrix composites mmcs, laser deposition manufacturing ldm, mechanical propertie
  • 出版物名称:   JOURNAL OF ALLOYS COMPOUNDS
  • ISSN:   0925-8388 EI 1873-4669
  • 通讯作者地址:  
  • 被引频次:   5
  • DOI:   10.1016/j.jallcom.2021.160724 EA JUN 2021
  • 出版年:   2021

▎ 摘  要

Graphene-based metallic nanocomposites are promising materials for applications where tailored strength and functionality are required such as space and automotive industries. Additive manufacturing, specifically 3D printing, is currently considered a revolutionary process to tailor and engineer materials for certain applications. Herein, we report fast and reliable approach to prepare mechanically robust, ductile and high thermally conductive graphene-based aluminum nanocomposites using laser deposition manufacturing (LDM). Conventional ball milling was used to homogenously mix graphene platelets and aluminum alloy powder (AlSi7Mg) and then sintered by LDM. Structure-property relations of aluminum/graphene nano-composites were investigated and thus LDM process was assessed. This includes morphological characterizations such as optical microscopy, transmission electron microscopy, x-ray diffraction and energy dispersive spectrometry; and mechanical properties measurements including tensile test and Vickers hardness. The 3D printed Al-alloy/graphene nanocomposites showed increments of 60.7%, 23.03%, 193.7% and 66% in tensile strength, Young's modulus, elongation at break and Vickers hardness in comparison with pure Al-alloy. This study proved reliability of 3D printing metallic composites with mechanical robustness and other tailored functionality such as thermal conductivity. (C) 2021 Elsevier B.V. All rights reserved.