• 文献标题:   Hydrogenation of the buffer-layer graphene on 6H-SiC (0001): A possible route for the engineering of graphene-based devices
  • 文献类型:   Article
  • 作  者:   LIN YP, KSARI Y, THEMLIN JM
  • 作者关键词:   graphene, hydrogenation, photoemission spectroscopy, electronic structure
  • 出版物名称:   NANO RESEARCH
  • ISSN:   1998-0124 EI 1998-0000
  • 通讯作者地址:   Univ Toulon Var
  • 被引频次:   11
  • DOI:   10.1007/s12274-014-0566-0
  • 出版年:   2015

▎ 摘  要

The hydrogenation at various temperatures of the (6 root 3 x 6 root 3)R30 degrees reconstruction of SiC(0001), the so-called buffer layer graphene (BLG), is investigated. For the BLG, a significant concentration of remaining dangling bonds related to unsaturated Si atoms of the outermost SiC bilayer is evidenced in the inverse photoemission spectra. These dangling bonds give rise to a peak around 1 eV above the Fermi level, associated with the upper single-electron states of a Mott-Hubbard insulator, which vanishes upon hydrogenation. Hydrogen atoms adsorbed at ambient temperature remain covalently bound to BLG (H-BLG) up to temperatures of similar to 500 degrees C. They induce additional C-Si bonds at the BLG/SiC interface that saturate the remaining Si dangling bonds, as evidenced in both IPES and Auger electron spectra. The H-BLG further shows a large energy gap and an excess n-type doping in comparison to the pristine BLG. Upon hydrogen exposure at higher temperature (> 700 degrees C), hydrogen atoms intercalate at the BLG/SiC interface, inducing the formation of a single layer of quasi-freestanding graphene (QFSG) lying on top of a hydrogenated (root 3 x root 3)R30 degrees reconstruction as supported by IPES. We suggest that the high-stability and the distinct electronic structure of both BLG-derived structures, H-BLG and QFSG, may open a route for the engineering of graphene-based devices.