• 文献标题:   Highly sensitive interfaces of graphene electrical-electrochemical vertical devices for on drop atto-molar DNA detection
  • 文献类型:   Article
  • 作  者:   MATTIOLI IA, HASSAN A, SANCHES NM, VIEIRA NCS, CRESPILHO FN
  • 作者关键词:   van der waals surface, shortcircuit, graphene electrochemical device, zeptomolar detection, dna biosensing
  • 出版物名称:   BIOSENSORS BIOELECTRONICS
  • ISSN:   0956-5663 EI 1873-4235
  • 通讯作者地址:  
  • 被引频次:   19
  • DOI:   10.1016/j.bios.2020.112851 EA JAN 2021
  • 出版年:   2021

▎ 摘  要

The development of novel high-sensitivity DNA-based biosensors is beneficial, as these devices have applications in the identification of genetic risk factors, medical diagnostics, and environmental monitoring. Herein, we report on the first robust device capable of detecting DNA on a microliter drop with a zepto-molar (10(-21)) concentration. To accomplish this, we engineered an electrical-electrochemical vertical device (EEVD) that comprises a novel drain and source terminal in a short-circuited configuration, paired with an ideal nonpolarizable reference electrode. Vertical electron transfer occurs perpendicularly to the graphene plane, while the electronic current flows through the graphene van der Waals (vdW) heterojunctions. Ferrocene adsorbed on graphene was strategically chosen as the vdW heterojunction redox component. Charge carrier insertion into the graphene makes the EEVD 10 times more sensitive than traditional graphene field-effect transistors. Interfacial potential changes were measured for single-stranded DNA detection with an unprecedented zepto-molar limit of detection.