• 文献标题:   Insight on Thermally Activated Hydrocarbon Dehydrogenation on the Pt3Ni(111) Surface: From Adsorbed Hydrocarbons up to Graphene Formation
  • 文献类型:   Article
  • 作  者:   POLITANO A, WANG L, CHIARELLO G
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF PHYSICAL CHEMISTRY C
  • ISSN:   1932-7447
  • 通讯作者地址:   Fdn Ist Italiano Tecnol
  • 被引频次:   2
  • DOI:   10.1021/acs.jpcc.7b11102
  • 出版年:   2018

▎ 摘  要

The Pt3Ni(111) alloy is characterized by the presence of an outermost surface layer only composed by Pt atoms, that is, the so-called Pt skin, which is at the basis of its outstanding performances in oxygen reduction reaction. The growth of graphene on this alloy is further motivated by the realization of a charge-neutral Gr/metal gate, which can be replaced by a p-doped Gr/oxide/metal configuration upon heating in an oxygen environment. Herein, we have followed the complete reaction pathway starting with adsorbed hydrocarbons and ending with the large-scale growth of a graphene overlayer. Experiments using temperature-programmed X-ray photoelectron spectroscopy have been carried out for different conditions (C2H4 dose and sample temperature). Submonolayer graphene (0.08 ML) is reached upon heating at T = 1000 K an ethene monolayer dosed at T = 80 K. Conversely, monolayer graphene domains are achieved for C2H4 cracking at T = 800 K. We also find that carbon atoms dissolved into the bulk segregate toward the substrate during the cooling.