• 文献标题:   Graphene-to-Substrate Energy Transfer through Out-of-Plane Longitudinal Acoustic Phonons
  • 文献类型:   Article
  • 作  者:   CHEN IJ, MANTE PA, CHANG CK, YANG SC, CHEN HY, HUANG YR, CHEN LC, CHEN KH, GUSEV V, SUN CK
  • 作者关键词:   graphene, thz coherent acoustic phonon, substrate effect, picosecond ultrasonic, nanoultrasonic spectroscopy
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Natl Taiwan Univ
  • 被引频次:   14
  • DOI:   10.1021/nl404297r
  • 出版年:   2014

▎ 摘  要

Practically, graphene is often deposited on substrates. Given the major substrate-induced modification of properties and considerable energy transfer at the interface, the graphene substrate interaction has been widely discussed. However, the proposed mechanisms were restricted to the two-dimensional (2D) plane and interface, while the energy conduction in the third dimension is hardly considered. Herein, we disclose the transfer of energy perpendicular to the interface of the combined system of the 2D graphene and the 3D base. More precisely, our observation of the energy dissipation of optically excited graphene via emitting out-of-plane longitudinal acoustic phonon into the substrate is presented. By applying nanoultrasonic spectroscopy with a piezoelectric nanolayer embedded in the substrate, we found that under photoexcitation by a femtosecond laser pulse graphene can emit longitudinal coherent acoustic phonons (CAPs) with frequencies over 1 THz into the substrate. In addition, the waveform of the CAP pulse infers that the photocarriers and sudden lattice heating in graphene caused modification of graphene substrate bond and consequently generated longitudinal acoustic phonons in the substrate. The direct observation of this unexplored graphene-to-substrate vertical energy transfer channel can bring new insights into the understanding of the energy dissipation and limited transport properties of supported graphene.