▎ 摘 要
We investigate the radiation properties of a driven exciton-biexciton structure quantum dot placed close to a graphene sheet. The study of the Purcell factor then demonstrates the tunability of light-matter coupling, which in turn provides the possibility to control the steady-state populations. As the result, dipole transitions can be selectively enhanced and asymmetry in the resonance fluorescence can be observed. Meanwhile, both quadratures can exhibit two-mode squeezing at the Rabi sideband frequencies. A further study shows that although the increase in the environment temperature has a destructive influence on the population imbalance, squeezing occurs even at room temperature. Due to the flexibility in controlling the resonance fluorescence spectrum and producing two-mode squeezed states, our proposal would have potential applications in quantum information and other quantum research fields. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement