▎ 摘 要
The nanostructured design of electrode materials is a potential strategy to enhance the electrochemical performance of lithium-ion batteries but are usually limited to electrodes with the low mass loading, which rapidly diminish in the total energy-power-density of practical device. Herein, we develop an effective solution for designing 3D holey-graphene frameworks cross-linked with encapsulated mesoporous amorphous FePO4 nano-particles through microemulsion system. High-mass-loading electrodes with high reversible capacity (156 mA h g(-1) under 0.5C), ultra-high rate capability (76 mA h g 1 under 50C), and outstanding cycle stability (>95% reversible capacity retention over 500 cycles) were achieved. Adaption of such material leads to high-mass-loading electrodes with energy and power density as high as 152 W h Kg(-1) and 71 W h Kg(-1) at 152 W Kg(-1) and 3550 W Kg(-1), respectively, which represents a key step in promoting practical applications. This study provides an innovative approach to design high-energy-power electrode material in advanced electrochemical energy storage device.