▎ 摘 要
Owing to its unique physical and chemical properties, graphene has attracted tremendous attention in the preparation of graphene-based composites for various applications. In this study, two different strategies have been developed to load zinc oxide (ZnO) nanorods onto reduced graphene oxide (RGO) sheets, i.e., in situ growth and a self-assembly approach. The microstructure and morphology of the synthesized RGO/ZnO nanocomposites was investigated by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and Brunauer-Emmett-Teller (BET) measurements. Fluorescence emission spectra (PL) of RGO/ZnO composites were performed to attribute quality of combination between RGO and ZnO. Significantly enhanced photocatalytic activity of RGO/ZnO nanocomposites in comparison to bare ZnO nanoparticles was revealed by the degradation of methylene blue under irradiation, which can be attributed to the inhibition of electron-hole pair recombination and enhanced adsorption due to the presence of RGO sheets.