▎ 摘 要
Ballistic thermal transport properties in graphene nanoribbon modulated with strain are investigated by non-equilibrium Green's function approach. The results show that the strain can suppress the phonon transport of flexural phonon mode (FPM) and enhance the phonon transport of in-plane mode (IPM) in low-frequency region, leading to the reduction in the thermal conductance of FPM and the enhancement in the thermal conductance of IPM. The total thermal conductance is decreased by strain as the reduction in the thermal conductance of FPM overcomes the enhancement in the thermal conductance of IPM.