▎ 摘 要
Graphene and single-walled carbon nanotube (SWCNT) have been widely studied because of their extraordinary electrical, thermal, mechanical, and optical properties. This paper describes a novel and flexible method to fabricate all-carbon field-effect transistors (FETs). The fabrication process begins with assembling graphene grown by chemical vapor deposition (CVD) on a silicon chip with SiO2 as the dielectric layer and n-doped Si substrate as the gate. Next, an atomic force microscopy (AFM)-based mechanical cutting method is utilized to cut the graphene into interdigitated electrodes with nanogaps, which serve as the source and drain. Lastly, SWCNTs are assembled on the graphene interdigitated electrodes by dielectrophoresis to form the conductive channel. The electrical properties of the thus-fabricated SWCNT-graphene FETs are investigated and their FET behavior is confirmed. The current method effectively integrates SWCNTs and graphene in nanoelectronic devices, and presents a new method to build all-carbon electronic devices.