▎ 摘 要
Nitrogen-doped graphene (NG) was generated by hydrothermal method, using GO as the raw material and formamide as the reducing-doping source. The composite material was characterized by Fourier transform infrared (FTIR) spectrum, X-ray diffraction (XRD) spectrum, X-ray photoelectron spectroscopy (XPS). The results showed that Nitrogen was successfully doped in the graphene. Through regulating the reaction temperature, time and the ratio of graphite oxide and formamide, the different nitrogen contents were obtained, the highest nitrogen content was 5.67%. NG was also synthesized by urea or ammonia, characterizing by XPS. The characterization results showed that for taking urea and ammonia as nitrogen source, pyrrolic-N was the main form of nitrogen existing, taking formamide as a nitrogen, pyridinic-N was the main form of nitrogen existing. Based on these experimental results by different nitrogen source, the N-doped graphene mechanism was interpreted.